Scidown文献预览系统!
基于改进KNN算法的城轨进站客流实时预测
郇宁 谢俏 叶红霞 姚恩建 城市交通;实时预测;K近邻;进站客流;动态时间规整
针对实时进站客流数据的高维数,多噪声,波动频繁等特征,本文提出一种基于改进 K最近邻(K-nearest-neighbor, KNN)算法的城轨进站客流实时预测方法.首先,通过对分时客流数据的相关性分析,确定表征客流特征的状态向量;其次,结合数据特性改进近邻样本的模式匹配过程,利用关键点法去除原始序列中的噪声扰动,并引入动态时间规整算法实现考虑序列形态的相似性度量;再次,根据样本间流量差异引入距离权重和趋势系数,推演未来时段的进站量,实现滚动的实时预测;最后,依托广州地铁客流数据仓库对预测模型进行精度分析. 结果表明,对于全网159个站点,5 min粒度下全天分时进站量预测的平均绝对百分比误差的均值为11.6%,能够为路网状态监控提供可靠的数据支撑.
『Sci-Hub|Scidown』怎么用?来看看教程吧!

支持模式 1.支持DOI号 2.支持英文文献全名搜索 3.支持参考文献搜索 4.知网文献(暂时关闭)


安卓手机、电脑用户,您可以在QQ浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!(注意是文献的DOI号)


苹果手机用户,您需要先在App Store里搜索并下载 Documents by Readdle 这个APP,在APP首页,左划右下角的指南针图标打开APP内置浏览器,在浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!


如出现BUG?赶快加入【Scidown互助交流群】反馈吧:729083885【点击一键加群】