Scidown文献预览系统!
一种基于节点分割的隐私属性(a, k)-匿名算法
邓秀勤 张翼飞 江志华 谭立辉 隐私属性 隐私保护 节点分割 匿名 社交网络
伴随着网络技术的发展,各类社交网络所包含的信息也在不断地增大.在数据信息增加的同时也意味着隐私信息泄露的可能性增大.因此在上传和提取用户信息的时候应该考虑到敏感信息的保护,在k-匿名算法的基础上衍生的(a, k)-匿名算法是经典的隐私保护模型,但是随着社交网络的复杂性不断增加,传统的(a, k)-匿名算法不足以满足社交网络中信息隐匿的要求.针对在社交网络中,节点的结构信息和非隐私属性信息等也可能会受到攻击,本文提出一种基于节点分割的(a, k)-匿名算法.该算法对社交网络中带有隐私属性值的节点进行分割,使得节点特征被分割到两个节点里,降低了节点被攻击识别的可能性.实验结果表明,该算法可以有效防御部分攻击造成的隐私属性泄露,同时保证数据保持一定的可用性.
『Sci-Hub|Scidown』怎么用?来看看教程吧!

支持模式 1.支持DOI号 2.支持英文文献全名搜索 3.支持参考文献搜索 4.知网文献(暂时关闭)


安卓手机、电脑用户,您可以在QQ浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!(注意是文献的DOI号)


苹果手机用户,您需要先在App Store里搜索并下载 Documents by Readdle 这个APP,在APP首页,左划右下角的指南针图标打开APP内置浏览器,在浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!


如出现BUG?赶快加入【Scidown互助交流群】反馈吧:729083885【点击一键加群】