Scidown文献预览系统!
基于机器学习订正模型的未来百年全球海表温度预估研究
匡志远 宋振亚 董昌明 机器学习 订正模型 海表面温度 FIO-ESM v2.0 未来预估
经过半个多世纪的发展,气候模式已成为理解气候变化机理和预测预估未来气候不可或缺的工具,然而由于其对气候变化的模拟能力仍存在一定的不足,这影响了气候预测预估的精准性.基于机器学习的订正模型在天气预报和气候预测预估等方面的探索性研究中表现出了较好的应用潜力.本文基于集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)和BP (Back Propagation)神经网络发展了气候模式全球月平均海表温度(Sea Surface Temperature, SST)的订正模型,基于历史观测数据和气候模式FIO-ESM v2.0参与第六次国际耦合模式比较计划(Coupled Model Intercom-parison Project 6, CMIP6)的历史试验结果确定了模型参数,进而对该模式三种排放情景(SSP1-2.6,SSP2-4.5和SSP5-8.5)的未来百年全球月平均SST开展了预估订正.结果表明:采用本文建立的机器学习订正模型,能够有效降低历史试验的模拟偏差,均方根误差由0.401℃降至0.096℃,平均绝对偏差由0.338℃降至0.077℃,相关系数由0.33提升到了0.95.经过订正后,未来三种排放情景下的全球平均SST增温趋势分别为0.424℃/100a,1.325℃/100a和3.185℃/100a,本世纪末20年(2081~2100)年平均的全球平均SST较最近20年(1995~2014)将分别升温0.608℃,1.183℃和2.409℃.
『Sci-Hub|Scidown』怎么用?来看看教程吧!

支持模式 1.支持DOI号 2.支持英文文献全名搜索 3.支持参考文献搜索 4.知网文献(暂时关闭)


安卓手机、电脑用户,您可以在QQ浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!(注意是文献的DOI号)


苹果手机用户,您需要先在App Store里搜索并下载 Documents by Readdle 这个APP,在APP首页,左划右下角的指南针图标打开APP内置浏览器,在浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!


如出现BUG?赶快加入【Scidown互助交流群】反馈吧:729083885【点击一键加群】