Scidown文献预览系统!
独立级联模型中基于社区的影响最大化( Community based influence maximization in the Independent Cascade Model )
L Hajdu A Bóta M Krész
—Community detection is a widely discussed topicin network science which allows us to discover detailed in-formation about the connections between members of a givengroup. Communities play a critical role in the spreading ofviruses or the diffusion of information. In [1], [8] Kempe et al.proposed the Independent Cascade Model, defining a simple setof rules that describe how information spreads in an arbitrarynetwork. In the same paper the influence maximization problemis defined. In this problem we are looking for the initial vertex setwhich maximizes the expected number of the infected vertices.The main objective of this paper is to further improve theefficiency of influence maximization by incorporating informationon the community structure of the network into the optimizationprocess. We present different community-based improvementsfor the infection maximization problem, and compare the resultsby running the greedy maximization method.
『Sci-Hub|Scidown』怎么用?来看看教程吧!

支持模式 1.支持DOI号 2.支持英文文献全名搜索 3.支持参考文献搜索 4.知网文献(暂时关闭)


安卓手机、电脑用户,您可以在QQ浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!(注意是文献的DOI号)


苹果手机用户,您需要先在App Store里搜索并下载 Documents by Readdle 这个APP,在APP首页,左划右下角的指南针图标打开APP内置浏览器,在浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!


如出现BUG?赶快加入【Scidown互助交流群】反馈吧:729083885【点击一键加群】