Scidown文献预览系统!
( SA-PBT-SVM的实木表面缺陷近红外光谱识别 )( SA-PBT-SVM的实木表面缺陷近红外光谱识别 )
于慧伶 门洪生 梁浩 张怡卓 实木板材 缺陷识别 近红外光谱 偏二叉树双支持向量机 模拟退火
针对实木板材表面存在的活节、死节、裂纹与虫眼4类缺陷,提出了基于近红外光谱分析的定性识别模型.随机选取50个样本组成训练集,30个样本组成测试集,在室内温度20℃ 、相对平均湿度50% 环境下,采用900~1700 nm的近红外光谱仪采集样本表面光谱,并利用SNV方法进行光谱数据预处理,以消除固体颗粒大小、表面散射及光程变化对漫反射光谱的影响;然后,采用偏二叉树双支持向量机(PB T-SVM)构建缺陷分类模型,运用模拟退火算法(SA)对4类核函数、参数及波长特征进行全局寻优;寻优过程以97个波长吸收度为输入特征,运用顺序前向法依次加入新特征,当分类器准确率达到90% 时,得到核参数及波长特征;最后,通过确定的核函数、参数与波长构建了缺陷分类模型,并对测试样本集进行了分类验证.实验结果表明,S N V预处理方法使相同缺陷的近红外光谱具有较好的一致性,其中,活节与死节光谱差异显著,但死节、裂纹与虫眼的光谱趋势相近;当PBT-SVM分类器采用多项式核函数、参数在 γ=28.63,coef=18.69,d=1,C=12.03时,缺陷识别效果最好,裂纹和活节的识别率达到了100%,虫眼为93.33%,死节为93.33%,平均准确率达到了96.65%,平均识别时间仅为0.002 s.利用近红外光谱分析的方法能够快速、有效地完成4类实木板材缺陷的识别.
『Sci-Hub|Scidown』怎么用?来看看教程吧!

支持模式 1.支持DOI号 2.支持英文文献全名搜索 3.支持参考文献搜索 4.知网文献(暂时关闭)


安卓手机、电脑用户,您可以在QQ浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!(注意是文献的DOI号)


苹果手机用户,您需要先在App Store里搜索并下载 Documents by Readdle 这个APP,在APP首页,左划右下角的指南针图标打开APP内置浏览器,在浏览器里输入 www.scidown.cn 打开scidown解析,就可以解析、下载了!


如出现BUG?赶快加入【Scidown互助交流群】反馈吧:729083885【点击一键加群】
『Sci-Hub|Scidown』相关参考文献